Posts Tagged ‘references’


A new species of Vaejovis is described from the Mexican state of Aguascalientes. It is assigned to the “mexicanus” group and compared with similar species from Jalisco, Guanajuato, and San Luis Potosí. A map with their known distributions is provided.







Phylogeographical studies in the Mojave and Sonoran deserts often find genetic discontinuities that pre-date the Pleistocene. A recent synthesis of phylogeographical data, called the Mojave Assembly Model, provides a hypothesis for the historical assembly of these desert biotas but does not adequately capture the complexity of pre-Pleistocene vicariance events. We tested this model and assessed pre-Pleistocene divergences by exploring the phylogeography of theAphonopelma mojave group, which is composed of turret-building tarantula species from the Mojave and Sonoran deserts.


Mojave and Sonoran deserts, south-western USA.


We augmented the sampling from a previous study by sequencing mitochondrial DNA (COI) from new material of the A. mojave group. We used phylogenetic and network analyses to identify clades and a molecular clock and lineages-through-time plots (LTT plots) to explore the timing and tempo of diversification. We tested for demographic expansion using neutrality tests and mismatch distributions. Species distribution models (SDMs) were constructed to compare current suitable habitat to that at the Last Glacial Maximum (LGM).


Phylogenetic, network and molecular-clock analyses identified six major clades that probably diverged during the late Miocene. The rate of diversification appears to have slowed during the Pliocene. Most clades exhibit signals of recent demographic expansion. SDMs predicted that suitable habitat shifted south and to lower elevations during the LGM.

Main conclusions

Phylogeographical analyses suggest that the A. mojave group experienced a burst of diversification in the late Miocene, followed by population expansions during the Pleistocene. Six major clades with origins in the late Miocene cannot be adequately explained by the Mojave Assembly Model. We propose the novel hypothesis that Miocene extensional tectonics caused populations to diverge in allopatry by producing low-elevation habitat barriers. Geological models, such as kinematic reconstructions, provide an ideal but underutilized framework for testing biogeographical hypotheses in these deserts and the wider Basin and Range Province.

Online URL Source




A new scorpion species, Vaejovis troupi sp. n., is described and placed in the “vorhiesi” group of the genus Vaejovis. Based on a recent molecular analysis of Bryson et al. (2013), this species is shown to be related to V. vorhiesi and V. grahami. Two of three diagnostic characters found in this new species are the presence of six inner denticles (ID) on the pedipalpal fixed and movable fingers, and a unique arrangement of trichobothria on the external surface of the pedipalp patella. This species was found in an isolated montane habitat in the Whetstone Mountains, Cochise County, Arizona.




The scorpion genus Alacran Francke, 1982, endemic to eastern Mexico, was created to accommodate Alacran tartarusFrancke, 1982. This remarkable troglobiotic species is adapted for life in some of the world’s deepest caves, 720–916 m below the surface in the Sistema Huautla of the state of Oaxaca (the deepest records at which a scorpion has been found). A second species, Alacran chamuco Francke, 2009, was later described from Te Cimutaá, also in Oaxaca. In the present contribution, we describe a third species, Alacran triquimera, sp. nov., recently discovered in a cave system in the state of Puebla, and test the monophyly and internal relationships of Alacran, based on a cladistic analysis of 10 terminal taxa (including seven species representing all four genera of Typhlochactidae) and 151 informative morphological characters, building on a previously published matrix. The single most parsimonious tree obtained, supports the monophyly of Alacran and the following relationships among its component species: (A. chamuco (A. tartarus + A. triquimera, sp. nov.)). The phylogenetic relationships among the three species of Alacran are consistent with the biogeographical history of the caves they inhabit. Based on the geological history of the Sierra Madre del Sur and the likely similar speleogenesis of the Tres Quimeras, Sistema Huautla and Te Cimutaá caves, we propose a vicariance hypothesis to account for the disjunct distribution of the three species of Alacran, whereby an initially more widespread, panmictic ancestral population speciated into three geographically isolated taxa following fragmentation of the southern Sierra Madre del Sur.

Source from the Scorpion Files and CSIRO Publishing.  See URL at

Koloti genus


The monophyly and phylogenetic position of Diplocentrus Peters, 1861, has remained ambiguous since the first published phylogenetic analysis of diplocentrid relationships, in which it was rendered paraphyletic by the placement of exemplar species from two other diplocentrid genera, Bioculus Stahnke, 1968, and Didymocentrus Kraepelin, 1905. The discovery of two diplocentrids with neobothriotaxic pedipalps, Diplocentrus magnus Beutelspacher and López-Forment, 1991, and Diplocentrus poncei Francke and Quijano-Ravell, 2009, from the central Mexican states of Guerrero and Michoacán, respectively, raised further questions about the limits of Diplocentrus. A recent phylogenetic analysis of 29 species of Diplocentrus and five exemplar species of the most closely related genera, based on 95 morphological characters and 4202 aligned nucleotides from DNA sequences of five markers in the nuclear and mitochondrial genomes, recovered the monophyly of Diplocentrus, excepting two neobothriotaxic species from central Mexico, justifying their removal from Diplocentrus. In the present contribution, Kolotl, n. gen. is created to accommodate the two species, Kolotl magnus (Beutelspacher and López-Forment, 1991), n. comb., and Kolotl poncei (Francke and Quijano-Ravell, 2009), n. comb., and both are redescribed.
Picture from the Scorpion Files Blog site.
American Museum of Natural History at the Digital Library.



The first rigorous analysis of the phylogeny of the North American vaejovid scorpion subfamily Syntropinae is presented. The analysis is based on 250 morphological characters and 4221 aligned DNA nucleotides from three mitochondrial and two nuclear gene markers, for 145 terminal taxa, representing 47 species in 11 ingroup genera, and 15 species in eight outgroup genera. The monophyly and composition of Syntropinae and its component genera, as proposed by Soleglad and Fet, are tested. The following taxa are demonstrated to be para- or polyphyletic: Smeringurinae; Syntropinae; Vaejovinae; Stahnkeini; Syntropini; Syntropina; Thorelliina; Hoffmannius; Kochius; and Thorellius. The spinose (hooked or toothed) margin of the distal barb of the sclerotized hemi-mating plug is demonstrated to be a unique, unambiguous synapomorphy for Syntropinae, uniting taxa previously assigned to different subfamilies. Results of the analysis demonstrate a novel phylogenetic relationship for the subfamily, comprising six major clades and 11 genera, justify the establishment of six new genera, and they offer new insights about the systematics and historical biogeography of the subfamily, and the information content of morphological character systems.

Direct Link at

Thanks to the Scorpion Files posting the news.  Its been a long time coming to see the results from the Scorpion Lab at AMNH.

A new scorpion species, Vaejovis grayae sp. nov. is described and placed in the “vorhiesi” group of the genus Vaejovis. This small brown species is found near Yarnell, Arizona, USA. It appears most similar to V. trinityae Ayrey and V. crumpi Ayrey et Soleglad. It can be distinguished from the other members of the “vorhiesi” group by aunique combination of non-overlapping morphological characters and multilocus DNA data (Bryson et al., 2013). The pedipalp fixed finger has 6 ID denticles and the movable finger has 7, like most other northern Arizona “vorhiesi” group species. Another characteristic of this species is its unique Arizona chaparral habitat.


Published at Euscorpius Online Journal:  Occasional papers in scorpiology


See more with Rich’s web site at


A new species of the genus Diplocentrus Peters, 1861 is described, based on several specimens collected in the Mexican state of Oaxaca. It is characterized by a high telotarsal spiniform setae count (4-5/5:5/6:6/6:6/6-7), and the pectinal tooth counts of 12–15, mode = 13 (male) or 11–13, mode = 12 (female). With the description of this species, the diversity of the genus is increased to 51 species in Mexico.


The genus Diplocentrus Peters, 1861 comprises nearly 60 species, 51 of them are distributed in Mexico, is the most diverse genus in the family Diplocentridae Karsch, 1880 (Santibáñez-López et al. 2013a). The Mexican species were divided in two groups by Hoffmann (1931), based on size and coloration. Francke (1977) redefined the groups in a key to identification of the Diplocentrus species occurring in the Mexican state of Oaxaca, based on cheliceral and pedipalp femur ratios, and renamed the whitei group to mexicanus group because it included type species (Diplocentrus mexicanus Peters, 1861). Nevertheless, Francke (1978) realized that the distinction of both groups was problematic because the diagnostic characters of the pedipalp femur were also used to separate other genera in the family. Recently, Santibáñez-López et al. (2013a) presented an operational diagnosis for the keyserlingii group; but did not assume that it was monophyletic, pending further investigation of Diplocentrus phylogeny. Fifteen species are reported for the Mexican state of Oaxaca, nine of them belong to the keyserlingii group, and six to the mexicanus group. In the present contribution, Diplocentrus franckei, sp. n. from the mexicanus group is described from Oaxaca, Mexico; it is compared to its most morphological similar species.

Citation: Santibáñez-López CA (2014) A new species of the genus Diplocentrus Peters, 1861 (Scorpiones, Diplocentridae) from Oaxaca, Mexico. ZooKeys 412: 103–116


06 May, 2014


Survival in microrefugia represents an important paradigm in phylogeography for explaining rapid postglacial re-colonization by species in temperate regions. Microrefugia may allow populations to persist in areas where the climatic conditions on the surface have become unfavourable. Caves generally contain stable microclimates and may represent microrefugia for species capable of exploiting both cave and surface habitats (troglophiles). We examine the phylogeography of the troglophilic North American vaejovid scorpion Pseudouroctonus reddelli using 1,993 base pairs of mitochondrial and nuclear DNA sequence data generated from 12 populations. We use (i) descriptive measures of genetic diversity and population genetics statistics, (ii) reconstructions of phylogeographical structure, spatial diffusion during diversification, and population sizes through time, and (iii) species distribution modelling to test predictions of the hypothesis that caves serve as microrefugia. We compare phylogeographical patterns in P. reddelli with other troglophilic species across the Edwards Plateau karst region of Texas.


Results revealed high haplotype and nucleotide diversity and substantial phylogeographical structure, probably generated during the Pleistocene. Spatial diffusion occurred along the southern edge of the Edwards Plateau from multiple refugia along the Balcones Escarpment. There was little evidence for population and geographical expansion. Species distribution models predicted substantial reductions in suitable epigean habitat for P. reddelli at the Last Glacial Maximum (LGM).


High genetic diversity, strong phylogeographical structure, diffusion from multiple refugia, and unfavourable climatic conditions at the LGM collectively support the hypothesis that caves served as microrefugia for P. reddelli. Similar patterns of genetic structure in P. reddelli and other troglophilic species across the Edwards Plateau karst region of Texas suggest that caves serving as microrefugia are important for the formation, maintenance, and future survival of troglophilic species in temperate karst regions.


Last Glacial Maximum; Refugia; Species distribution model; Scorpiones; Vaejovidae


Add in URL

Blog title update:  Expanding  into news with general arachnids relevant to North America all in one place.  Mexico and the western states in the U.S. presents various transitions zones and micro habitats and is thus unique in arachnid taxa.

Hope you enjoy the site for educational and regional informations !


Chad Lee B.Sc. 1995.

Biology and Natural Resource Management.  Texas Certified Applicator