Archive for the ‘Scorpions in North America’ Category


Morphologically conserved taxa such as scorpions represent a challenge to delimit. We recently discovered populations of scorpions in the genus Kovarikia Soleglad, Fet & Graham, 2014 on two isolated mountain ranges in southern California. We generated genome-wide single nucleotide polymorphism data and used Bayes factors species delimitation to compare alternative species delimitation scenarios which variously placed scorpions from the two localities with geographically adjacent species or into separate lineages. We also estimated a time-calibrated phylogeny of Kovarikia and examined and compared the morphology of preserved specimens from across its distribution. Genetic results strongly support the distinction of two new lineages, which we describe and name here. Morphology among the species of Kovarikia was relatively conserved, despite deep genetic divergences, consistent with recent studies of stenotopic scorpions with limited vagility. Phylogeographic structure discovered in several previously described species also suggests additional cryptic species are probably present in the genus.

See here :

Genus Catalinia, gen. nov. (Scorpiones: Vaejovidae) is described from southern California, USA and Baja California, Mexico. The genus is composed of four species formerly placed inPseudouroctonusCatalinia minima (Kraepelin, 1911), comb. nov. (type species), C. andreas (Gertsch et Soleglad, 1972), comb. nov., C. castanea (Gertsch et Soleglad, 1972), comb. nov., and C. thompsoni, comb. nov. (Gertsch et Soleglad, 1972). Major diagnostic characters of Catalinia include a carapace with a very weak anterior indentation, a very stout metasoma with little or no tapering from segment I to V, and a mating plug with two partial bases. Evidence is presented suggesting that Catalinia is closely related to the “apacheanus” species group of Pseudouroctonus.


Update soon !

Morphology still plays a key role in the systematics and phylogenetics of most of the scorpion families and genera, including the Diplocentridae Karsch, 1880. The monophyly of this family, and the monophyly of its two subfamilies is supported by morphological characters; however, neither hypothesis has been tested using molecular data. The lack of a molecular phylogeny has prevented the study of the evolution of morphology within the family. Here, we examine the morphological evolution of several key character systems in diplocentrid systematics. We tested the monophyly of the Diplocentridae, and subsequently the validity of its two subfamilies using a five-locus phylogeny. We examined the variation and evolution of the shape of the carapace, the external surface of the pedipalp patella and the retrolateral surface of the pedipalp chelae of males and females. We also examined the phylogenetic signal of discrete and continuous characters previously reported. We show that Diplocentridae is monophyletic, but Nebinae is nested within Diplocentrinae. Therefore, Nebinae is synonymised with Diplocentrinae (new synonymy). Finally, we show that a new character system proposed here, tarsal spiniform and macrosetal counts, retains high phylogenetic signal and circumscribes independently evolving substructures within this character system.

See here


Recent syntheses of phylogeographical data from terrestrial animals in the Mojave and Sonoran deserts have revealed a complex history of geologic and climatic vicariance events. We studied the phylogeography of Smeringurus vachoni to see how vicariance events may have impacted a large, endemic rock scorpion. Additionally, we used the phylogeographical data to examine the validity of two subspecies of S. vachoni that were described using unconventional morphological characters. Phylogenetic, network and SAMOVA analyses indicate that S. vachoni consists of 11 clades mostly endemic to isolated desert mountain ranges. Molecular clock estimates suggest that clades diversified between the Miocene and early Pleistocene. Species distribution models predict a contraction of suitable habitat during the last glacial maximum. Landscape interpolations and Migrate-n analyses highlight areas of gene flow across the Colorado River. Smeringurus vachoni does not comprise two subspecies. Instead, the species represents at least 11 mitochondrial clades that probably diversified by vicariance associated with Pleistocene climate changes and formation of ancient lakes along the Colorado River corridor. Gene flow appears to have occurred from west to east across the Colorado River during periodic river avulsions  Thanks to Matt for sending PDF.See at

Medical application in scorpion’s venom?A team of Mexican biotechnology researchers has identified a molecule in scorpion venom that could serve both as an aid in antibiotic delivery and as a bactericide disinfectant

Medical application in scorpion’s venom?


Diplocentrus duende n. sp. is described based on adult males collected from a locality in the Tehuacán–Cuicatlán Valley, Mexico. This species has punctate pedipalp surfaces, a condition present only in four other species of this specious genus. As suggested here, this condition has evolved independently in these species within the “mexicanus” group of Diplocentrus from the rest of the diplocentrids

See at

See at several news sources:

See PDF at


Summary:  Genus Graemeloweus, gen. nov. (Scorpiones: Vaejovidae) is described from northern California, USA. The genus is composed of three species formerly placed in Pseudouroctonus: Graemeloweus iviei (Gertsch et Soleglad, 1972), comb. nov. (type species), G. glimmei (Hjelle, 1972), comb. nov., and G. maidu (Savary et Bryson, 2016), comb. nov. Major diagnostic characters of Graemeloweus include a non-bifurcated primary lamellar hook, the presence of a secondary lamellar hook, a complex mating plug with a two part base and an asymmetric crescent-shape barb, and the presence of a well-developed ventromedian (V2) carina on the pedipalp chela. Evidence is presented suggesting that Graemeloweus is more closely related to Kovarikia than Pseudouroctonus.

Note:  See